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It is shown how to perform some steps of perturbation theory if one assumes a measure-
theoretic point of view, i.e. if one renounces to control the evolution of the single
trajectories, and the attention is restricted to controlling the evolution of the measure of
some meaningful subsets of phase–space. For a system of coupled rotators, estimates
uniform in N for finite specific energy can be obtained in quite a direct way. This is
achieved by making reference not to the sup norm, but rather, following Koopman and
von Neumann, to the much weaker L2 norm.
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1. INTRODUCTION

A very much discussed problem is the question whether Nekhoroshev-type the-
orems can have some relevance for the foundations of Statistical Mechanics. In
its heuristic formulation (“actions remain frozen to their initial values up to ex-
ponentially long times”) this theorem seems to grasp the essential feature of the
Fermi-Pasta-Ulam phenomenon: the energy remains confined to the low frequency
modes, while the energies (i.e., up to a factor, the actions) of the high frequency
modes remain frozen up to very large times. On the other hand, in Nekhoroshev
theorem the estimate for the time of freezing is of the type T � T0 exp(ε∗/ε)1/N ,
where ε is the pertubative parameter (for example the specific energy) and N is
the number of degrees of freedom of the system. Thus, for systems of interest
to Statistical Mechanics, in which N is very large, the exponential estimate in
the above formula disappears (see Refs. 1, 7). These considerations seem to indi-
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cate that Classical Perturbation Theory may be useless for the aims of statistical
mechanics.

The following remark is however in order. The aim of Perturbation Theory,
as it was developed until now, is to give the most accurate description of every
trajectory of a dynamical system, and this enforces, at a technical level, the use
of the sup norm in the phase space for the estimate of the relevant quantities. On
the other hand, for the aims of Statistical Mechanics a control over any single
trajectory is completely irrelevant (the knowledge of the values of 1023 actions
instant by instant is enormously redundant for estimating, for example, the specific
heat). So one can limit oneself to control only the evolution of some significant
quantities, for example the energy of some subsystem of the complete system. In
this case the dependence on the total number N of degrees of freedom changes
drastically, and in fact estimates uniform in N were obtained (see Refs. 2, 3);
however, such estimates turn out to be valid only for finite total energy E , namely
for vanishing specific energy E/N in the thermodynamic limit N → +∞. Very
recently, in the same spirit, estimates uniform in N for non–vanishing specific
energy E/N where given (see Ref. 4) in the Fermi-Pasta-Ulam problem, but only
for a special class of initial data.

However the author feels that, for the purposes of Statistical Mechanics,
also such a weakened approach is unnecessarily strong, because one pretends
to control some dynamical variable “initial data by initial data”, without tak-
ing into account any statistical feature of the problem. Instead, a measure–
theoretic point of view ought to be taken, namely one should renounce to
control the evolution of the single trajectories, and the attention should be re-
stricted to controlling the evolution of the measure of some meaningful subset
of phase-space. Indeed, it will be shown here that, in such a way, estimates
uniform in N for finite specific energy can be obtained, and in quite direct a
way. This is achieved by making reference not to the sup norm, but rather to
some much weaker integral norm, typically, following Koopman and von Neu-
mann (see Refs. 5, 6), the L2 norm, which will be the one used in the present
paper.

To this end, we first show how, for a generic system, an estimate of the rate
of mixing for any invariant measure µ can be given. This is shown in Sec. 2.
Then, by considering a concrete example (a system of N rotators with nearest
neighbours interactions), we show that at least three steps of the perturbative
construction can be performed. This will be obtained by making use of the method
of the direct construction of integrals of motion. The corresponding estimates
show that the mixing rate is much smaller than the one estimated directly from
the equations of motion. To this second task Secs. 3 and 4 will be devoted. In
particular, in Sec. 3 a normal form theorem is given, from which the estimate of
the mixing rate follows as a Corollary. Sec. 4 is devoted to an accurate discussion
of the first step of perturbation theory, while two further steps are performed in
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Appendix 1, leading to the proof of the theorem. A technical Lemma is proven in
Appendix 2.

2. THE ESTIMATE OF THE MIXING RATE

Consider a Hamiltonian system with Hamiltonian function H on a phase
space M, endowed with a finite invariant measure µ (so that we can suppose
µ(M) = 1). It is well known that the existence of a smooth integral of motion f (x)
independent of the energy implies that the system is not ergodic (on a single surface
of constant energy). Indeed, obviously, the two sets A = {x : | f (x) − f̄ | < k} and

B = {x : | f (x) − f̄ | > 2k}, where f̄
def= ∫

f (x) dµ is the expectation of f and k
a positive constant, are invariant disjoint nontrivial sets (considering for example
the Gibbs measure, and a not too large value of k).

Suppose now f is only a quasi–constant of motion, in the sense that (we
denote by [·, ·] the Poisson bracket of two functions) [H, f ] is small in L2 norm;
the problem of finding such a function will be one of the main themes discussed
later. In such a case the sets A and B are no more invariant: denoting by At the set
evolved from A according to the dynamics, one expects that At ∩ B �= ∅.

But if the evolution is slow (in the mean), one expects that it will take some
time in order that, at a given point of A, the value of the function ft , i.e. the
evolution of f (to be defined in a moment), grows from the value (smaller than k)
it has at time t = 0 to the values (larger than 2k) that f takes in B, i.e., in terms
of sets, the measure of At ∩ B is expected to remain small up to a certain time.

In order to give a rigorous form to such a rather vague reasoning, we begin
with introducing the notion of mixing time. We recall that one defines a system to
be (strongly) mixing if µ(At ∩ B) → µ(A)µ(B) as t → +∞. But, as especially
pointed out by von Neumann, it is also of interest to have an estimate of the actual
relaxation time, i.e. the time at which the limit value is actually reached. This
is particularly relevant if µ(At ∩ B) grows slowly. This justifies the following
definition

Definition 1 (mixing time). We define the mixing time tmix, for the two sets A
and B defined as above, by tmix = sup t∗, where t∗ is such that

µ(At ∩ B) <
1

2
µ(A)µ(B) (1)

for all 0 < t < t∗.

The choice of the factor 1/2 to define the degree of mixing is a matter of convention,
and it will appear later that any other choice α with 0 < α < 1 would work as
well.
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So, the previous considerations can be restated in terms of the mixing time,
by saying that the presence of a quasi-constant of motion f is expected to lead to a
large value of tmix. In order to prove this fact we have first of all to recall in which
way the function f evolves with time. Denoting by �t the flow generated by the

equations of motion, we define the evolution of the function f (x) by ft
def= f ◦ �−t

(the definition ft = f ◦ �t is often adopted, but the difference is irrelevant). So
ft is a time-dependent constant of motion, i.e., satisfies the Liouville equation

∂t ft + [H, ft ] = 0.

Thus, even if at time t = 0 the derivative of ft is small, it may happen that
‖ ft − f ‖2 (the L2-norm of ft − f ) becomes large as time increases, so that the
intersection At ∩ B too may become large. One actually has the following first,
simple, perturbative result

Theorem 1. Let µ be an invariant measure, and f ∈ L2( dµ) be such that

‖[H, f ]‖2 ≤ η‖ f ‖2, (2)

with a positive constant η, where ‖ · ‖2 denotes the L2( d µ) norm. If ft is the
evolution of the function f , then one has

‖ ft − f ‖2 ≤ ηt ‖ f ‖2. (3)

Proof: Introduce the difference δ
def= ft − f . As ft satisfies the Liouville equa-

tion and f is time–independent, one has ∂tδ = ∂t ft = −[H, ft ], which in terms
of δ takes the form

∂tδ = −[H, δ] + g, (4)

with g
def= −[H, f ]. It is well known that, µ being invariant, the solutions of

the Liouville equation are generated by a one-parameter group Û (t) of unitary
operators (see Ref. 5) in the sense that ft = Û (t) f . As δ(0) = 0, the solution of
Eq. (4) is given by

δ =
∫ t

0
Û (t − s)g ds, (5)

so that, Û being unitary (i.e., ‖Û (t − s)g‖2 = ‖g‖2), one gets the estimate

‖δ‖2 ≤
∫ t

0
‖Û (t − s)g‖2 d s = t‖g‖2 ≤ ηt‖ f ‖2

i.e., the thesis. �
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We are now in a position to give a simple estimate of the measure of the
intersection At ∩ B. Notice that, if x ∈ At ∩ B, then one has both | f (x) − f̄ | > 2k
(since x ∈ B), and | ft (x) − f̄ | < k (since ft (x) = f (�−t x) and �−t x ∈ A). So
one has

kµ(At ∩ B) ≤
∫

At ∩B
|| f (x) − f̄ | − | ft (x) − f̄ || d µ ≤

∫

At∩B
|f (x) − ft(x)| d µ

≤
( ∫

At ∩B
d µ

)1/2 ( ∫

At ∩B
| f (x) − ft (x)|2 d µ

)1/2

≤ (µ(At ∩ B))1/2 ‖ ft − f ‖2.

Thus, by (3) one gets

µ(At ∩ B) ≤ η2t2 ‖ f ‖2
2

k2
. (6)

So, we have proved the following theorem (analogous to that of Chebyshev)

Theorem 2. Let µ be an invariant finite measure, and f ∈ L2( dµ) have the
property ‖[H, f ]‖2 ≤ η‖ f ‖2. Define the sets A and B by

A = {x : | f (x) − f̄ | ≤ k}, B = {x : | f (x) − f̄ | ≥ 2k},
with f̄ = ∫

f dµ and k a positive constant. Then the estimate (6) holds.

Relation (6) allows one to give a lower bound to the mixing time. In fact
using (6) one has µ(At ∩ B) < 1

2µ(A)µ(B) for all t such that

t <
k
√

2

η‖ f ‖2
(µ(A)µ(B))1/2, (7)

so that one gets the estimate

tmix
k
√

2

η‖ f ‖2
(µ(A)µ(B))1/2, (8)

One sees that tmix → +∞ as η → 0, so that a sort of continuity is recovered.
If f is a constant of motion, the two sets A and B remain separated for all times; if
the time derivative of f is small, then A and B remain “quasi” separated (at least
in measure) for very long times, which tend to infinity with the vanishing of the
derivative ḟ , namely of η.

A comment on relation (8): up to now we have considered the constant k as a
free parameter. But, as k is a measure of the deviation of f from its expectation f̄ ,
it is meaningful to take it of the same order of magnitude as the standard deviation
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of f ,

δ f
def=

[∫
( f (x) − f̄ )2 dµ

]1/2

.

Otherwise it could happen that the measure of A or that of B be essentially zero
and the estimate (8) trivial. So, in the rest of the paper we fix k = δ f , and our
estimate (8) becomes

tmix ≥
√

2 δ f

η‖ f ‖2
(µ(A)µ(B))1/2. (9)

3. THE PERIODIC CHAIN OF ROTATORS

In the rest of the paper we tackle the problem of constructing, for a concrete
system, a function f which has a slow evolution, i.e., satisfies (2) with a small
η. The system we consider is a classical one, a chain of 2N rotators with near-
est neighbour trigonometric coupling and periodic boundary conditions, i.e., the
system with Hamiltonian

H =
N∑

j=−N

p2
j

2
−

N∑

j=−N

V0 cos(q j+1 − q j ), qN = q−N , (10)

where q j ∈ T1, p j ∈ R and V0 is a positive constant. As an invariant measure we
take the Gibbs one at inverse temperature β, defined by

dµ = 1

Z
exp(−βH) d x, Z =

∫
exp(−βH) d x (11)

with x = (q−N+1, . . . , pN ), and d x = d q−N+1 . . . d pN .
For notational simplicity we will perform the (non canonical) change of

coordinates q̃ j = q j , p̃ j = β1/2 p j , and a change of time τ = β−1/2t . This
being understood, we drop tildes, and denote q̃ j by q j and p̃ j by p j .
The resulting equations of motion can be deduced from the Hamiltonian
function

H =
N∑

j=−N

p2
j

2
− ε

N∑

j=−N

cos(q j+1 − q j ), qN = q−N , (12)

where we have denoted ε = βV0. Correspondingly, the Gibbs measure becomes

dµ = 1

Z
exp(−H ) dx, Z =

∫
exp(−H ) dx .
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From the form of the Hamiltonian it is apparent that ε is our small parameter, be-
cause for ε = 0 our system is formally integrable, having, as constants of motions,
all the functions p j . For small ε, one has instead

[H, p j ] = ε(sin(q j+1 − q j ) − sin(q j − q j−1)).

From this it follows that the momenta p j themselves have a slow evolution, or are
quasi-integrals, because they satisfy the relation (2) with η = 2ε, i.e.,

‖[H, p j ]‖2 ≤ 2ε = 2ε‖p j‖2.

This follows making use of the facts that | sin x | ≤ 1 and that the p j , being normally
distributed with unit variance and zero mean, have the property ‖p j‖2 = 1. So,
applying the estimate (9) one finds that the mixing time is τmix ∼ ε−1, which in
terms of the original, non-rescaled time, gives the estimate

tmix ∼ ε−1/2. (13)

But actually the mixing time is much larger, because perturbation theory up
to third order leads to the following

Theorem 3. (normal form construction) For any j , there exists a function f j

of the form f j = p j + ε3/5 X j (p, q) having the properties

‖[H, f j ]‖2 ≤ C1ε
1+ 3

5 (14)

‖X j‖2 ≤ C2, (15)

with two positive constants C1 and C2 independent of ε and N.

The construction of the function f j is performed in the next two Sections
using the method of the direct construction of a first integral (see for example(8)),
and implementing three steps of the perturbative construction. The first step is
performed in Sec. 4, and the further ones are performed in Appendix 1.

It is clear that the estimate (14) leads to an estimate of the mixing time of
order

tmix � ε−1/2−3/5, (16)

which is much larger than (13). There remains open the question of how many
steps of the perturbative construction can be performed. If one could prove that
the construction can be performed to all orders, one would obtain a mixing time
exponentially large, thus recovering the analog of Nekhoroshev theorem, with
however a complete elimination of N .

For a proof of (16) one has to estimate the other quantities entering formula
(9). This is provided by the following Lemma
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Lemma 1. For any j , consider the function f j = p j + ε3/5 X j (p, q), with X j ∈
L2( d µ). Then one has (δ denoting standard deviation)

(i) f̄ j = O(ε3/5)
(ii) δ2

f j
= δ2

p j
+ O(ε3/5) = 1 + O(ε3/5)

(iii) for the sets Aε = {x : | f j − f̄ j | < δ f j } and Bε = {x : | f j − f̄ j | > 2δ f j } one
has

µ(Aε) = µ(A0) + O(ε2/5), µ(Bε) = µ(B0) + O(ε2/5).

Proof: The proof goes as follows.

(i) This is immediate. One has f̄ j = p̄ j + ε3/5 X̄ j . On the other hand p̄ j = 0,
and |X̄ j | ≤ ∫ |X j | d µ ≤ ‖X j‖2.

(ii) This is obtained by a simple computation. Indeed one has

δ2
f j

=
∫

( f j − f̄ j )
2 d µ

=
∫

p2
j dµ + 2ε3/5

∫
pjXj dµ + ε6/5

∫
X 2

j dµ − (f̄j )2.

Now,
∫

p2
j d µ = δ2

p j
since p̄ j = 0, while, by the Schwartz inequality,

| ∫ p j X j d µ| ≤ ‖p j‖2 ‖X j‖2. The result is then obtained by estimating f̄ j

through i).
(iii) We show only the first inequality, because the second one is proved in the same

way. We start noticing the trivial relation δX j = ∫
(X j − X̄ j )2 d µ ≤ ‖Xj ‖2

2,
so that, introducing the set C = {x : |X j − X̄ j | ≥ ε−1/5}, by Chebyshev the-
orem one gets

µ(C) ≤ ε2/5‖X j‖2
2 = O(ε2/5).

Now, the complementary set Aε/C is contained in the set A′ = {x : |p j | ≤
δ f j + ε2/5}, because in Aε/C one has |X j − X̄ j | ≤ ε−1/5. The measure
of the set A′ can be readily evaluated, recalling that p j is normally dis-
tributed, and that in addition, by ii), one has δ f j = 1 + ε3/5. One thus
finds µ(A′) = µ(A0) + O(ε2/5), and so one gets the thesis using µ(Aε) =
µ(C) + µ(Aε/C) ≤ µ(C) + µ(A′).

�

4. THE FIRST PERTURBATIVE STEP

We have now to show how the quasi-constants of motion f j entering
Theorem 3 are constructed. The first perturbative step is performed in the present
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section, while the second and the third one are given in Appendix 1. From the
Hamiltonian (12) we obtain the following equations of motion

{
ṗ j = ε(sin(q j+1 − q j ) − sin(q j − q j−1))

q̇ j = p j .
(17)

It is well known (see Ref. 9) how a normal form (which is however formal for
N � 1/ε) can be constructed for this equation. However, in this simple case it is
possible to find a first-order integral directly, avoiding the use of the normal form
techniques. This is obtained by recalling that in virtue of the equations of motion
one has the relation

ε sin(q j+1 − q j ) = − d

dt

(

ε
cos(q j+1 − q j )

p j+1 − p j

)

+ ε2 cos(q j+1 − q j )

(p j+1 − p j )2

× (sin(q j+2 − q j+1) − 2 sin(q j+1 − q j ) + sin(q j − q j−1)).

and the analogous one for ε sin(q j − q j−1). So, in the region p j �= p j±1, if we
define

X̃ (1)
j

def= cos(q j+1 − q j )

p j+1 − p j
− cos(q j − q j−1)

p j − p j−1
,

we find that the function f̃ (1)
j = p j + ε X̃ (1)

j evolves with speed of order ε2, i.e.,
is slower than p j . It is obvious that, due to the presence of the denominators (the

small divisors), the function X̃ (1)
j is not in L2, and so is useless for the estimates.

This example also shows in a very clear way the difficulty of applying the
standard perturbation techniques for large N . Indeed, in order to have a slow
evolution (of order ε2), it is not enough to restrict the initial data to the region
|p j − p j±1| > σ (with σ a positive parameter), but one has to secure that such
an inequality also holds for times or order ε−2. On the other hand, this cannot
be secured, because p j±1 evolve in general on a time scale of order ε−1. One
way to secure that p j±1 do not evolve too much is to consider the functions

X̃ (1)
j±1, and choose initial data such that |p j±1 − p j±2| > σ . But then we have

the problem of the evolution of the variables p j±2. Thus, one is forced to iterate
this procedure, so that our hypothesis can be secured only in a set of the form
C = {x : |p j − p j+1| > σ,∀ j}. On the other hand a simple computation shows
that one has µ(C) � (1 − σ )N , i.e., that the set C has essentially a vanishing
measure for N large.

Instead, if we want to control the evolution of the measure of the sets, and not
the single trajectories, this kind of problems is not met. In fact, one can limit oneself
to perform the normalization only in the non-resonant zone |p j − p j±1| > σ , and
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keep the action p j unaltered in the resonant one. The idea is thus to define

f (1)
j

def=
{

p j for |p j − p j±1| < σ

p j + ε X̃ (1)
j for |p j − p j±1| > σ,

in such a way that the region where the derivative of f (1)
j is large, has a small

measure (of order σ ). Now, choosing in an appropriate way σ as a function of
ε (we will take σ = ε2/5), one can obtain that the L2-norm of ḟ (1)

j becomes less

than the L2-norm of ṗ j , notwithstanding the fact that these two functions have the
same sup-norm.

In order to give this idea a clear mathematical content, we need to introduce
some objects. First of all we need a truncation function ζ (x) of C∞ class, i.e. a
function having the properties stated in

Lemma 2. For every sufficiently small (positive) constant σ , there exists C∞(R)
functions ζ (x), Z(x) and Z (2)(x) such that:

(i) one has ζ (x) = 1 for |x | < σ , and ζ (x) = 0 for |x | > 3σ ;
(ii) for all n ∈ N, one has |∂n

x ζ (x)| < cnσ
−n, where cn are numerical constants

independent of x and σ ; moreover ∂n
x ζ (x) = 0 for |x | < σ and |x | > 3σ ;

(iii) one has

dZ
dx

= ζ (x),
dZ (2)

dx
= Z(x).

Moreover one has Z(x) = 0 and Z (2)(x) = 0 for |x | > 3σ , and the estimates
|Z(x)| < 4|x | and |Z (2)(x)| < |x |2/2 hold.

These are standard properties of truncation functions, the only unusual one being
iii), the meaning of which will become clear in the Appendix 1, when we will go
beyond the first order. The proof of this Lemma is deferred to the Appendix 2, in
which the explicit form of the functions ζ (x), Z(x) and Z (2)(x) is exhibited.

Furthermore, we define the integer vectors e j ∈ Z2N as the standard basis
vectors, i.e., those having all components vanishing but the j-th one, which is

equal to one. Analogously we define the vectors δ j
def= e j+1 − e j . We finally define

the set M1
j made up of the four vectors ±δ j , ±δ j−1.

In order to have formulae with the minimal number of indexes, from now on
we concentrate on the case j = 0, but it will be obvious that all formulæare valid
for a generic value of j . The equation of motion for p0 can be rewritten as

ṗ0 =
∑

k∈M1
0

ε

2i
ck exp(ik · q),
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where the constants ck = ±1 come from the expression of the sine in terms of
complex exponentials. Now, using the function ζ (x) one can separate the resonant
part from the non resonant one as follows

ṗ0 = ε
∑

k∈M1
0

ckζ (k · p)
exp(ik · q)

2i
+ ε

∑

k∈M1
0

ck
(
1 − ζ (k · p)

)exp(ik · q)

2i
.

Thus, by integrating by parts the second term at the r.h.s., one gets the identity

d

dt

⎛

⎝p0 + ε
∑

k∈M1
0

ck
1 − ζ (k · p)

k · p

exp(ik · q)

2

⎞

⎠

= ε
∑

k∈M1
0

ckζ (k · p)
exp(ik · q)

2i
+ ε

∑

k∈M1
0

ck

2
∂x

1 − ζ (x)

x

∣
∣
∣
∣
k·p

exp(ik · q) k · ṗ.

(18)

Now the term k · ṗ is of order ε, because

k · ṗ = ε
∑

j

∑

k′∈M1
j

k′ · e j
ck′

2i
exp(ik′ · q),

and moreover, since k ∈ M1
0 , only the terms with j = −2, . . . , 1 do not vanish

(for the other values of j one has k′ · e j = 0). So, one gets

exp(ik · q)k · ṗ = ε
∑

k′∈{M1
j }

k′ · e j
ck′

2i
exp(i(k + k′) · q)

where the summation is performed over all sets M1
j with j = −2, . . . , 1. Now,

introducing the function

X (1)
0

def= σ
∑

k∈M1
0

ck
1 − ζ (k · p)

k · p

exp(ik · q)

2
, (19)

we can rewrite (18) in the form

d

dt

(
p0 + εσ−1 X (1)

0

) = ε
∑

k∈M1
0

ckζ (k · p)
exp(ik · q)

2i
+ R1, (20)
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where the remainder R1 has the form

R1
def= ε2

∑

k1∈M1
0

∑

k2∈{M1
j }

k2 · e j
ck1 ck2

4i
∂x

1 − ζ (x)

x

∣
∣
∣
∣
k1·p

exp(i(k1 + k2) · q). (21)

The estimate of the r.h.s of (20) is then very simple. Indeed one has
∫

|ζ (k · p) exp(ik · q)|2 d µ =
∫

|ζ (k · p)|2 dµ

≤
∫

|p0−p±1|<3σ

exp

(

− p2
0 + p2

±1

2

)

d p0 d p±1 = 6σ,

so that
∥
∥
∥
∥
∥

∑

k∈M1
0

ckζ (k · p)
exp(ik · q)

2i

∥
∥
∥
∥
∥

2

≤ 4σ 1/2. (22)

Instead, in order to estimate the term R1 given by (21), one has to estimate a finite
sum of integrals of the type

∫ ∣
∣
∣
∣∂x

1 − ζ (x)

x

∣
∣
∣
∣
k·p

exp(ik · q)

∣
∣
∣
∣

2

dµ =
∫ ∣

∣
∣
∣∂x

1 − ζ (x)

x

∣
∣
∣
∣
k·p

∣
∣
∣
∣

2

dµ

≤
∫

|p0−p±1|>3σ

∣
∣
∣
∣∂x

1 − ζ (x)

x

∣
∣
∣
∣

p0−p±1

∣
∣
∣
∣

2

× exp

(

− p2
0 + p2

±1

2

)

d p0 d p±1.

We can estimate the derivative appearing in the last term, using ii) of Lemma 2
for the derivative of ζ (x), and the fact that the denominator is bounded away from
zero (since |x | > σ ). One has thus

∣
∣
∣
∣∂x

1 − ζ (x)

x

∣
∣
∣
∣

p0−p±1

∣
∣
∣
∣

2

≤ Cσ−4,

with a given constant C, and using this bound in the above formula one finds

∫ ∣
∣
∣
∣∂x

1 − ζ (x)

x

∣
∣
∣
∣
k·p

exp(ik · q)

∣
∣
∣
∣

2

dµ ≤ Cσ−4.

Thus, there exists a numerical constant C1 such that

‖R1‖2 ≤ C1σ
−2ε2. (23)
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In exactly the same way one can show, from the expression (19) for the function
X (1)

0 , that there exists a numerical constant C2, such that
∥
∥X (1)

0

∥
∥

2
≤ C2. (24)

Now, taking σ = ε2/5, from estimates (23) and (22) one gets that the function
f (1)
0 = p0 + ε3/5 X (1)

0 has a time derivative of order ε1+1/5, i.e., it evolves more
slowly than the action p0. To obtain a time–evolution as slow as the one implied
by (14) of Theorem 3, one needs to perform two more perturbative steps.

These further steps are not trivial iterations of the first one, because one meets
here with the new problem of dealing with resonant terms. At the moment we have
not yet been able to find a general scheme to deal with the different resonant
terms which are generated at any new order. We are only able to deal with any
concrete resonance which actually does present itself. Just to give an example of
such a procedure, the second and the third perturbative steps are implemented in
Appendix 1. We hope to have the possibility to come back to the general problem
of resonances in the future.

5. CONCLUSIONS

In this paper a perturbative scheme is introduced which may be called “uni-
form” in phase space, in the sense that it can be applied at the same time both
in the non resonant region and in the resonant ones. However, the general it-
erative scheme still remains to be found. The reason is that in every resonant
region there exists a different adiabatic quantity, the “resonant” action, which
has a slow evolution, and I was not able to find a recursive way to glue all such
pieces together. Probably it needs to better understand the global behaviour of the
resonances.

While the present approach does not allow one to control individual trajec-
tories, it is well suited to study the ergodic properties of the dynamics, through
the estimate of an integral norm of suitable functions. A distinctive feature of
this approach is the fact that it can be applied to systems with an arbitrarily large
number of degrees of freedom (at least in the case of rotators), so that it can be of
use for systems of interest in statistical mechanics.

One could ask whether this approach could be applied also to other more
complicated Hamiltonian. The answer is positive for a generalisation in which the
rotators are coupled to a small number of neighbours through a potential more
complicate than simple cosines (for example a generic trigonometrical polyno-
mial). Things are different however if one considers potentials which couple all
the degrees of freedom: for example, in the Fermi-Pasta-Ulam system every nor-
mal mode couples with essentially every other one, and the problem of resonances
becomes very delicate. But nevertheless, although (at the moment) I am unable to
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perform even a single step of perturbation theory, in any case the use of the L2

norm allows one to conclude that the mixing time is at least larger than an inverse
power of the small parameter. Notice that the sup norm of the perturbation is not
at all small,2 so that no estimate could be obtained using that norm.

The idea of using in perturbation theory an L p integral norm instead of
the familiar sup norm, which is a fundamental ingredient of the present paper,
was apparently introduced for the first time by A. Neishtadt in the paper, (10)

where a non–Hamiltonian system with a small number of degrees of freedom
was considered. I thank A. Neishtadt for kindly pointing this out to me, after the
reading of a preliminary version of the present paper. I also thank G. Gallavotti
for useful comments.

APPENDIX 1: THE SECOND AND THE THIRD STEPS

OF THE PERTURBATION PROCEDURE

By symmetry, letting (k1, k2) → (−k1,−k2), one can easily check that in the
expression (21) for R1 the terms with k1 + k2 = 0 are lacking. So, in complete
analogy with what was done for the first step, we can integrate by parts all the
terms, obtaining, at least in the region where |(k1 + k2) · p| > σ , a remainder of
order ε3/σ 4, while the resonant zone |(k1 + k2) · p| < σ will give a contribution
to the remainder of order ε2/σ 3/2. For σ = ε2/5 the two contributions are of the
same order ε1+2/5. The question remains of understanding how to treat the first-
order resonant term of the remainder, because in this case the phase of the terms
exp(ik · q) is slow, and so we cannot take the average.

But now one has to consider that slow angles appear only in the time deriva-
tives of the quantities k · p. So one could argue that the terms with slow angles
may be replaced by the time derivatives of k · p plus some terms containing fast
angles. In this case, the terms with the time derivative of k · p would give a total
derivative, while the terms with fast angles could be averaged away. Indeed, things
go exactly in this way.

In fact, in our case in which k = ±δ j , j = 0,−1, one has that k′ = e j+1 + e j

is orthogonal to k, so that the time derivative k′ · p only contains fast angles. In
addition, from the equations of motion one gets directly the relation

ε sin(δ j · q) = 1

2
(e j+1 + e j ) · ṗ − 1

2
(e j+1 − e j ) · ṗ + ε sin(δ j−1 · q)

= k′ · ṗ − 1

2
k · ṗ + ε sin(k′′ · q).

2 This can be easily checked by putting all the energy in a single crystal site. In such a case the
contribution of the nonlinear terms of the potential (i. e. the perturbation) is much larger than the
linear one, but obviously the set of the points of such a type has a very small measure.
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where we have set k′′ = δ j−1 (remember that k = δ j ). From this it follows that the
first term at the r.h.s of (20) can be rewritten as

ε
∑

k∈M1
0

ckζ (k · p)

2i
exp(ik · q) = 1

2

∑

k∈M1
0

−ζ (k · p)k · ṗ + 1

2

∑

k∈M1
0

ζ (k · p)k′ · ṗ

+ ε
∑

k∈M1
0

ζ (k · p) sin(k′′ · q)

= d

dt

(

− 1

2

∑

k∈M1
0

Z(k · p)

)

+ ε

2

∑

k1∈M1
0

∑

k2∈M2
k1

c1
k2

ζ (k1 · p) exp(ik2 · q),

where c1
k2

are numerical constants (less than 2 in absolute value), and the sets M2
k1

are made up of the vectors ±δ j−1, ±δ j+1 (remember that k1 = ±δ j ), as one can
check using the relation k′ · ṗ = ε(sin(δ j+1 · q) − sin(δ j−1 · q)).

From the expression of M2
k1

one checks that k2 �= k1, so we have rewritten
the resonant term as a total derivative plus some non–resonant terms. Now the non
resonant terms can be integrated by parts to give

ε
∑

k∈M1
0

ckζ (k · p)

2i
exp(ik · q)

= d

dt

[

− 1

2

∑

k∈M1
0

Z(k · p) + −ε

2

∑

k1∈M1
0

∑

k2∈M2
k1

c1
k2

ζ (k1 · p)(1 − ζ (k2 · p))

k2 · p

× exp(ik2 · q)

]

+ ε

2

∑

k1∈M1
0

∑

k2∈M2
k1

c1
k2

ζ (k1 · p)ζ (k2 · p) exp(ik2 · q) + R2,

(25)

with

R2 = ε

2

∑

k1∈M1
0

∑

k2∈M2
k1

c1
k2

4

[
∂

∂x
ζ (x)|k1·p

(1 − ζ (k2 · p))

k2 · p
k1 · ṗ

+ ζ (k1 · p)
∂

∂x

(1 − ζ (x))

x

∣
∣
∣
∣
k2·p

k2 · ṗ

]

exp(ik2 · q). (26)
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The remainder R2 can be simply estimated using the estimate for the derivatives
of ζ (the estimate ii) of Lemma 2) in the same way in which R1 was estimated
in Sec. 4. The only difference is the presence of the terms ζ (k1 · p) which restrict
the computation of the integrals to a region of measure σ , giving a smaller value.
One has indeed

‖R2‖2 ≤ C3ε
2σ−3/2, (27)

where C3 a positive numerical constant.
Now, we turn to the remainder R1 at the r.h.s of expression (20). As already

said, every term can be integrated by parts (outside of the resonant region), and so,
using the function ζ ((k1 + k2) · p) to split the phase space in the resonant region
and the non resonant one, we get

R1 = ε2
∑

k1∈M1
0

∑

k2∈{M1
j }

k1 · e j

c1
k1

4i

∂

∂x

1 − ζ (x)

x

∣
∣
∣
∣
k1·p

ζ ((k1 + k2) · p)

× exp((k1 + k2) · q) + d

dt

⎡

⎣−ε2
∑

k1∈M1
0

∑

k2∈{M1
j }

k1 · e j

c1
k1

4

∂

∂x

1 − ζ (x)

x

∣
∣
∣
∣
k1·p

× 1 − ζ ((k1 + k2) · p)

(k1 + k2) · p
exp((k1 + k2) · q)

]

+ R3,

with

R3
def= ε2

∑

k1∈M1
0

∑

k2∈{M1
j }

k1 · e j

c1
k1

4

[

(k1 + k2) · ṗ
∂

∂x

1 − ζ (x)

x

∣
∣
∣
∣
k1·p

× ∂

∂x

1 − ζ (x)

x

∣
∣
∣
∣
(k1+k2)·p

+ k1 · ṗ
∂2

∂x2

1 − ζ (x)

x

∣
∣
∣
∣
k1·p

1 − ζ (x)

x

∣
∣
∣
∣
(k1+k2)·p

]

× exp((k1 + k2) · q).

Now, defining

X (2)
0 = X (1)

0 + σ

2ε

∑

k∈M1
0

Z(k · p)

+ σ
∑

k1∈M1
0

∑

k2∈M2
k1

c1
k2

ζ (k1 · p)(1 − ζ (k2 · p))

k2 · p
exp(ik2 · q)



An Averaging Theorem in the Thermodynamic Limit 1073

+ εσ
∑

k1∈M1
0

∑

k2∈{M1
j }

k1 · e j

c1
k1

4

∂

∂x

1 − ζ (x)

x

∣
∣
∣
∣
k1·p

× 1 − ζ ((k1 + k2) · p)

(k1 + k2) · p
exp((k1 + k2) · q),

we find

d

dt
(

p0 + X (2)
0

) = ε

2

∑

k1∈M1
0

∑

k2∈M2
k1

c1
k2

ζ (k1 · p)ζ (k2 · p) exp(ik2 · q)

+ ε2
∑

k1∈M1
0

∑

k2∈{M1
j }

k1 · e j

c1
k1

4i

∂

∂x

1 − ζ (x)

x

∣
∣
∣
∣
k1·p

ζ ((k1 + k2) · p)

× exp((k1 + k2) · q) + R2 + R3. (28)

The second step is then accomplished. The estimate can be performed in a
very simple way, by estimating the L2-norm as the sup of the function times the
measure (to the power 1/2) of its support (i.e. of the region in which the function
does not vanish). One finds in this way

‖Z(k · p)‖2 ≤ const σ 3/2

‖εζ (k1 · p)ζ (k2 · p) exp(ik1 · p)‖2 ≤ const σε

‖R2‖2 ≤ const σ−3/2ε2

‖R3‖2 ≤ const σ−4ε3,

i.e. that, for σ = ε2/5, all terms are of order ε1+2/5. One has then
∥
∥
∥
∥p0 + ε

σ
X (2)

0

∥
∥
∥
∥

2

≤ C3ε
1+ 2

5

∥
∥X (2)

0

∥
∥

2
≤ C4,

with certain numerical constants C3 and C4.
We note that, from the explicit form (31) of Z(x) given in appendix, for

|k · p| < σ one has Z(x) = x , so that in the resonant region one has

p0 + 1

2
Z(k · p) = 1

2
k′ · p,

i.e. in the resonant region our function coincides with the fast action.
At this point one can ask whether it is possible to perform more steps of the

perturbative construction, or even an infinite number of them. It is well known that,
in the process of the direct construction of an integral of motion, insurmountable
difficulties are found in the resonant case. An example of these difficulties was met



1074 Carati

at the second step, when we had to deal with terms of the type ζ (k · p) sin(k · q).
To perform the third step one analogously has to deal with terms of the type

N1
def= ζ (k1 · p)ζ (k2 · p) sin(k2 · q),

and

N2
def= ζ ((k1 + k2) · p)

∂

∂k1 · p

1 − ζ (k1 · p)

k1 · p
sin((k1 + k2) · q),

in the remainder at the r.h.s of relation (28). At the successive steps we will find
other resonant terms having a form always different from those of the previous
steps, and at present we were unable to find a recurrent scheme to perform an
arbitrary number of steps. We limit ourselves to show briefly how the resonant
term at the r.h.s of (28) can be dealt with, and so how the third step of the
construction can be performed. In fact the terms R2 and R3 are non resonant
and thus can be integrated by parts (giving rise, at fourth order, to other resonant
terms).

We begin considering the terms of the type N1. Using the explicit form of
the vectors k1 and k2, one can check that

sin(k2 · q) = α1k1 · ṗ + α2k2 · ṗ +
∑

k3∈M2
k1 ,K2

βk3 sin(k3 · q), k3 �= k1, k2,

αi and βk3 being numerical constants, and M2
k1,K2

a given (finite) set of integer
vectors. One thus gets

ζ (k1 · p)ζ (k2 · p) sin(k2 · q) = α1ζ (k2 · p)
d

dt
Z(k1 · p)

+α2ζ (k1 · p)
d

dt
Z(k2 · p) + R4,

where R4 is non-resonant. Finally we have the relation

ζ (k1 · p)ζ (k2 · p) sin(k2 · q)

= d

dt
(α1ζ (k2 · p)Z(k1 · p) + α2ζ (k1 · p)Z(k2 · p))

−α1ζ
′(k2 · p)Z(k1 · p)k2 · ṗ + −α2ζ

′(k1 · p)Z(k2 · p)k1 · ṗ + R4.

At this point one can check that the terms at the r.h.s. outside the time-derivative
are non-resonant, and thus can be integrated by parts. The resulting terms are of
order εσ 3/2 (the terms which are triply resonating) and of order ε2σ−1 (the ones
which are integrated by parts in a doubly resonating region of measure σ 2).
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The other resonant term N2 can be treated in a similar way. One can check
(using the explicit expressions of k1 and k2) that

ε exp(i(k1 + k2) · q) = i(k1 + k2) · ṗ exp(ik1 · q) + εP1,

where εP1 is a non-resonant trigonometric polynomial. One has then

ζ ((k1 + k2) · p)
∂

∂k1 · p

1 − ζ (k1 · p)

k1 · p
exp(i(k1 + k2) · q)

= ∂

∂k1 · p

1 − ζ (k1 · p)

k1 · p
exp(ik1 · q)

d

dt
Z((k1 + k2) · p) + R5,

where R5 is non-resonant and can be integrated by parts. The first term at the r.h.s
gives instead, as usual,

∂

∂k1 · p

1 − ζ (k1 · p)

k1 · p
exp(ik1 · q)

d

dt
Z((k1 + k2) · p)

= d

dt

(
∂

∂k1 · p

1 − ζ (k1 · p)

k1 · p
exp(ik1 · q)Z((k1 + k2) · p)

)

+ ε

(

x
∂

∂x

1 − ζ (x)

x

)∣
∣
∣
∣
k1·p

((k1 + k2) · p) exp(ik1 · p) + R6,

where R6 are non resonant terms. Instead, the second term at the r.h.s is again
a resonant one, but it can be transformed into a total time-derivative (plus some
non-resonant terms) using again a relation of the kind

ε exp(ik1 · p) = (k1 + k2) · ṗ + εP2;

where again P2 is a non-resonant trigonometric polynomial. With some simple
algebra one finally gets

ζ ((k1 + k2) · p)
∂

∂k1 · p

1 − ζ (k1 · p)

k1 · p
sin((k1 + k2) · q)

= d

dt

[

Z((k1 + k2) · p)
∂

∂k1 · p

1 − ζ (k1 · p)

k1 · p
exp(i(k1 + k2) · q)

+ k1 · p
∂

∂k1 · p

1 − ζ (k1 · p)

k1 · p
Z (2)((k1 + k2) · p)

]

+ R8,

whereR8 is a non-resonant term. In this way it is clear how is it possible to perform
three steps of the construction, and at the same time how complicated becomes
the procedure of performing further steps. In any case, performing the estimate
and putting σ = ε2/5, the estimate of Theorem 3 is obtained
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APPENDIX 2: PROOF OF LEMMA 2

The proof of Lemma 2 is quite standard (apart from property iii)) and can be
found in any text–book in partial differential equations. Consider a C∞([−1, 1])
function y(x) having all derivatives vanishing for x → ±1 (take for example
y(x) = exp(1/(x2 − 1))). Such a function can obviously be extended smoothly to
the whole real line by setting it equal to zero outside that interval. Introduce now
the auxiliary function

ζ̃ (x) = 1

C

∫ 2

−2
y(t − x) d t, C

def=
∫ 1

−1
y(t) d t.

In terms of z = t − x one equivalently can write

ζ̃ (x) = 1

C

∫

[−2−x, 2−x]
⋂

[−1,1]
y(z) d z,

from which it is apparent that for |x | < 1 one has ζ̃ (x) = 1 (because in such
a case one has [−2 − x, 2 − x]

⋂
[−1, 1] = [−1, 1] ), while for |x | > 3 one has

ζ̃ (x) = 0 (in such a case one has instead [−2 − x, 2 − x]
⋂

[−1, 1] = ∅ ). If in
addition one has y(x) ≥ 0 one also gets 0 ≤ ζ̃ (x) ≤ 1. It is obvious that ζ̃ (x) is a
C∞ function, and one can define the constants

C ′
n

def= sup
|x |≤3

∣
∣
∣
∣

dn

dxn
ζ̃ (x)

∣
∣
∣
∣ . (29)

In the case of the exponential function y(x) = exp(1/(x2 − 1)), simple (numerical)
estimates for the first three constants are

C ′
0 = 1, C ′

1 < 2 and C ′
2 < 21; (30)

the other ones growing quite rapidly. It also obvious that all the derivatives vanish
for |x | < 1 and |x | > 3.

We take now

Z (2)(x)
def= x2

2
ζ̃

(
x

σ

)

,

and consequently, Z(x) being the derivative of Z (2)(x) and ζ (x) the derivative of
Z(x), one gets

Z(x) = x ζ̃

(
x

σ

)

+ x2

2σ
ζ̃ ′

(
x

σ

)

ζ (x) = ζ̃

(
x

σ

)

+ 2x

σ
ζ̃ ′

(
x

σ

)

+ x2

2σ 2
ζ̃ ′′

(
x

σ

)

. (31)
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The functions ζ (x), Z(x) and Z (2)(x) vanish for |x | > 3σ , while for |x | < σ they
reduce to ζ (x) = 1, Z(x) = x and Z (2)(x) = x2/2 (recall that the derivatives of ζ̃

vanish for |x | < 1). So i) of Lemma 2 is proved. To prove ii), one remarks that

dnζ (x)

dxn
= dn+2

dxn+2

(
x2

2
ζ̃

(
x

σ

))

= 1

σ n

(

(n2 + 3n + 2)
dn ζ̃

dxn
+ (n + 2)x

σ

dn+1ζ̃

dxn+1
+ x2

2σ 2

dn+2ζ̃

dxn+2

)

,

so that, recalling the bound (29), the constant cn can be taken equal to

cn = 5C ′
n+2 + 6(n + 2)C ′

n+1 + (n + 3n + 2)C ′
n.

Part iii) of Lemma 2 follows directly from the definition and from the explicit
bound (30) for the constants C ′

0, C ′
1 and C ′

2.
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